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Introduction

@ The implicit bias of optimization plays a important role in the
generalization performance of deep neural networks.

@ Among all hypotheses that fit all training data, the optimization
algorithm selects one which generalizes well.
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Introduction

In classification problems, gradient descent on deep linear networks converges
to the lo maximum margin solution if training data are linearly separable.
[Soudry et al., 2018]

Figure: Results of training deep linear networks for classification problems

Hui Jin Implicit bias of gradient descent August 12, 2020 3/ 23



Problem Setup

We consider shallow networks, with one input and a single hidden layer of n
ReLUs and one linear output:

F2,0) =Y WP wz + V], + . (1)
=1

These parameters are initialized by sampling independent random variables in
following way:

WSy (2)
) L\ /LB,

Here W and B are some pre-specified random variables. We assume that the
joint distribution of (W, B) is sub-gaussian.
To be more specific,

w Lw,
B LB,

@ d (3)
2) d 1
w2 L [iw,

p2 2L \/%B’
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Main Result

Theorem (Implicit bias of gradient descent in wide ReLU networks)

Consider a feedforward network with a single input unit, a hidden layer of n
rectified linear units, a single linear output unit, and weights and biases
initialized from a sub-Gaussian distribution. For any finite data set
{(zi,9:)}M,, there exist constant u and v so that optimization of the mean
square error on the adjusted training data {(z;,vy; — ux; —v)}M, by full-batch
gradient descent with sufficiently small step size converges to a parameter 6*
for which f(x,0%) attains zero training error. Furthermore, for any prescribed
bounded interval [—~L, L], we have inf,ci_r 1) || f(2,0%) — g*(x)||2 = O(n=2)
with high probability over the random initialization 6y, where g* solves
following variational problem.:

. 1 Vi i 2
i / @)~ @) do

subject to g(z;) =y; —ux; —v, i=1,...,M.

Here, the reciprocal of the function ((z) = [|W|3pw (W, -Wz) dW.
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Anti-Symmetrical Initialization (ASI)

To simplify the presentation, we use a special initialization called
Anti-Symmetrical Initialization (ASI) to make the initial output function to
be zero. It is defined as follows:

Fasa, ) = 2 (o 0) — L2 (.05, ®)

Here 99 = (9§, 7) is initialized with J( = ¥, so that

n n
V2—2)—1)  _ V2@ (1) |
fasi(w 90) = 35V WV e a Vet y S~V VetV = 0. (6)

i=1 i=1

The parameter vector is thus
Do = vee(™, 7™M a0 a0 27 _27® v25@) _25e),

» 3 @ 2
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Experimental Result
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Figure: Error between the solution function obtained by gradient descent training a
neural network and the solution to the variational problem, against the number of
neurons. Here the parameters were initialized by W ~ U(—1,1), B ~ U(—-2,2). In
the right panel, blue lines are examples of output functions from trained networks
with 10, 40, 160, and 640 neurons. Orange is the solution to the variational problem.
In close agreement with our theoretical results, as the number n of neurons increases,
the blue lines approximate the orange line uniformly at a rate O(1/y/n).

Hui Jin Implicit bias of gradient descent August 12, 2020 7/ 23



Experimental Result
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Figure: Error between the output of the neural network and solution of variational
problem against number of neurons. Trained networks with 20, 80, 320, and 2560
neurons. Initialization W ~ N(0,1), B ~ N(0,0.1). Blue is the output of neural
network at the end of training, and orange is the solution to the variational problem.
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Linearized Model

This is obtained by the first order Taylor expansion of the network function
with respect to the parameter, at the initial parameter value,

(2, w) = f(z,00) + Vo f(z,00)(w — bp). (7)

We write w for the parameter of the linearized model. According to Lee et al.
[2019, Theorem H.1],

sup || f1 (@, wi) = f (@, 00)]2 = O(n~%)

with arbitrarily high probability.

Hui Jin Implicit bias of gradient descent August 12, 2020 9/ 23



Training only the output layer approximates training all
parameters

According to initialization, with probability arbitrarily close to 1,
ng),gl(»l) = 0(1) and WEQ),B(Q) = O(n~2). Therefore, writing H for the
Heaviside function, we have

Vi f(.60) =W HW 2 +3") o= 0~ %), 8)
Vo0 f(@,00) =W HW e +5) = 0(n~3), 9)
and
Vo f (@, 60) =W e + 5, = 0(1), (10)
Voo f(2,00) =1 = O(1). (11)
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Training only the output layer approximates training all
parameters

Theorem (Training only output weights vs linearized network)

Consider a finite data set {(z;,y;)}M,. Assume that (1) we use the MSE loss,
i.e. 0T, y) = 27— yl3; (2) inf, Amin(©n) > 0. Let w, denote the parameters
of the linearized model at time t when we train all parameters and let wy
denote the parameters at time t when we only train weights of the output
layer. If we use the same learning rate 1 in these two training processes and
n < m, then for any x € R, with probability arbitrarily close to 1 over

random initialization,

sup | i (2, @) — fi%(z,ws)| = O(n~Y), as n — oco. (12)
t

V.
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Implicit bias in parameter space of a linearized model

Theorem (Parameters of the linearized model)

Consider a convex loss function £ which is K-Lipschitz continuous, i.e.
[6(71,9) — L(U2,v)| < K|g1 — Ba|. If rank(Vef(X,00)) = M, then the gradient
descent iteration with learning rate n < m converges to the unique
solution of following constrained optimization problem:

min ||w — fgll2 st (X, W) = . (13)

V.
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Optimization problem of the parameters

Gradient descent only on the output layer finds a solution of zero loss under
the assumption of the about theorem, so that

in ~ in L —(2). —(1 _
7™, B0) = (g2 00) = 3o WE = W)W s + B (14)
=1
:yj_f(xj,ao), j:].,...,_Z\f7

and |[W® — w | is minimized. Then gradient descent is actually solving
the following problem:
min |[W® — W(2)||§

W@
- T(2) (15)
subject to Z(Wi(z) -W; )[Wi(l)a:j +bily=y;, j=1,...,M.
i=1

Note that we let fi(x,6y) = 0 by using ASI trick (as before, this is not
essential but simplifies the presentation)
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Infinite width limit

Let u,, denote the empirical distribution of the samples (WZ-(I)7 b;)f_,, so that

L (WD 5) = 1/ for (WD, b) = (W b)), i =1,...,n, and p, (WD, ) =0
2)

otherwise. We further consider a function a, (Wi(l), b)) = n(Wi(z) -W,7).
Then
min |[W® — W(z)Hg
w®
- () (16)
subject to Z(Wi@) -W; )[Wi(l)xj +bily=y;, j=1,...,M.
i=1
becomes
i 2 (D 1)
WO b) dun (WD, b
o /Rz o, (WHb) dpn ( )
subject to / (WD WPz, 40 du, (WP 0y =y, j=1,...,M.
R2
(17)
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Infinite width limit

we can consider the infinite width neural network, i.e. the limit when n — oc.
Let 4 be the probability measure of (W, B). Then we can write a continuous
version of problem (17):

: 277 (1) (1)
W b)) du(Wwm b
Lomn, /RQa( ) du( )

subject to / aWD D)WWz +0), du(WW® ) =y;, j=1,...,M.
RZ
(18)
Theorem

Assume that W and B have finite fourth moments. Let (Wi(l)7 b)), be i.i.d.
samples drawn from the distribution of OV, B). Suppose p, in problem (17) is
the empirical distribution of the n samples (W(l) bi)i_,. Let @, (WM b) be
the solution of (17) and @(WW b) be the solution of (18). Then for any
bounded interval [~ L, L], sup,e(_p, 1] |9n(2,@n) — g(z,@)| = O(n —1/2) with
high probability.
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Function space description

We write ¢ = —b/W(l), which is the breakpoint of a ReLU with weight W (1)
and bias b, and we define a corresponding random variable C = —B/W. Here
we assume that P(W = 0) = 0. This means that the random variable C is well
defined. Let v denote the probability measure of (W, C). Finally, let
YWD ¢) = a(W®, —ecW M), which corresponds to a(W™),b). Then
problem (18) is equivalent to

i 2w w
Y ) d s
,YEHCI'I(%Q) /Rz ( C) V( C)

subject to / AW D, )W D (a; — )]y dv(WD,¢) =5, j=1,---, M.
RQ
(19)
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Function space description

Suppose v¢ has a density function pe(c). Let

9(2,7) = [oo YWD, )W (z — ¢)] 4 dv(WWD), ¢), which again corresponds to
the function represented by the network. Then, writing g” for the second
derivative with respect to x,

g"(z,7) = / ’Y(W(l), c) ‘W(l)) §(xz—c) dV(W(l), 0)
]R2
[ (AW a7 ) ) oo ) e
supp(rc) \/R
Lo, (0.0 0] ) st -
supp(vc) \/R

= pe(@) [ AOVD.2) WO diryie, (WD),
(20)
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Function space description

From the above, we see that v(W ), ¢) is closely related to ¢”(x,7). So we
want to express problem (19) in terms of ¢’ (z,~). However, g"(z,~)
determines g(z, ) only up to linear functions. Therefore we consider the
following problem:

i 2w w®
d ,
’yEC(]RQ),lune]R,veR /]R2 7 y¢) du( c)

subject to ux; +v +/ A WD WD (z; — )]y dv(WD e) =y,
R2
(21)
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Function space description
Theorem

Suppose (7,w,D) is the solution of (21), and consider

g(z, 7, w,v)) =uxr + v+ /R2 FWD WD (z - )]y dv(WD ). (22)

Let ve denote the marginal distribution of C and assume it has a density
function pc. Let E(OW?|C) denote the conditional expectation of W? given C.
Consider the function

((z) = pe(x)E(W?|C = z). (23)

Assume that training data z; € supp((), i = 1,...,m. Consider the set

S = supp(¢) N [min; z;, max; z;]. Then g(z, (7, @ )) satisfies

g (z,(7,u,v)) =0 for x € S and for x € S it 1s the solution of the following
problem:

) h//
necx(s) Js  ((@) (24)
subject to  h(z;)=y;, j=1,...,m
Avgoes 12, 2028 10 /) 25




Function space description

Proposition

@ Gaussian initialization. Assume that VW and B are independent,
3 3
W~ N(0,02) and B ~ N(0,02). Then C is given by ((x) = ——a2ugb

m(og+x202)2"
@ Binary-uniform initialization. Assume that W and B are independent,
W e {-1,1} and B ~ U(—ap, ap) with ap, > L. Then ¢ is constant on
[—L,L].
© Uniform initialization. Assume that YW and B are independent,
W ~ U(—aw, aw) and B ~U(—ap, ap) with ¢ > L. Then ( is constant on
[—L, L].
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Experimental
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Figure: Effect of ¢ on the shape of the solution function. The left panel shows the
solution of the variational problem for various different ¢ shown in the right panel.
Green line is for ¢ constant on [—2, 2], which results from W ~ U(—1,1),

B ~ U(—2,2); the blue line is for ¢(x) = 1/(1 4+ x*)?, from W ~ N(0,1),

B ~ N(0,1); and the orange line is for ¢(z) = 1/(0.1 + 2*)?, which results from
W ~ N(0,1), B~ N(0,0.1). We see that where ¢ peaks strongly, the solution
function can use a high curvature in order to fit the data.
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Future work

@ Multidimensional inputs.
@ Deep networks.
@ Other optimization method.
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